2.2.2. FORMULATION SECTION	_51
2.2.2.1. Preparation of insulin-chitosan polyelectrolyte complex (PEC) aqueous pha	ase
	_52
2.2.2.2. Preparation of the oily phase	
2.2.2.3. Preparation of the insulin-loaded nanoparticles dispersion system	
2.2.2.4. Characterization of the insulin-loaded nanoparticles dispersion system	_53
2.3. PRECLINICAL STUDIES	_54
2.3.1. Animals	_54
2.3.2. Induction of diabetes in rats using streptozotocin (STZ)	_54
2.3.3. Preparation of Krebs- bicarbonate buffer	_55
2.3.4. EVALUATION OF PHARMACOLOGICAL ACTIVITY OF INSULIN-LOADED	
NANOPARTICLE PREPARATION	_55
2.3.5. MEASUREMENT THE INTESTINAL ABSORPTION OF INSULIN-LOADED	
NANOPARTICLES BY EVERTED GUT SAC MODEL	_56
2.3.6. EVALUATION THE INTESTINAL ABSORPTION OF INSULIN-LOADED NANOPARTICI	
BY IN SITU INTESTINAL PERFUSION TECHNIQUE	_58
2.3.7. EVALUATION OF HEPATIC FIRST PASS METABOLISM OF INSULIN BY <i>IN SITU</i> LIVE	R
PERFUSION METHOD	_60
2.3.8. EVALUATION THE EFFECT OF DIFFERENT FLOW RATES ON INSULIN METABOLISM	ИIN
LIVER	_62
2.3.9. ISOLATION AND CULTURE OF NORMAL AND DIABETIC RAT HEPATOCYTES	
FOLLOWED BY DETERMINATION THE CAPACITY OF INSULIN METABOLISM IN LIVER	_63
2.3.9.1. Preparation	_63
2.3.9.2. Rat Perfusion for Liver Isolation	_63
2.3.9.3. Hepatocyte Cell Isolation	_65
2.3.9.4. Hepatocyte Culture	_65
2.3.9.5. Cell-based insulin degradation assay	_66
2.3.9.6. The inhibitory effect of bacitracin on cell-mediated insulin degradation in	
isolated hepatocytes	_66
2.4. STATISTICAL ANALYSIS	_67
3. RESULTS	_69
3.1. CHARACTERIZATION OF LOW MOLECULAR WEIGHT CHITOSAN (LMWC)	_69
3.1.1. DETERMINATION OF VISCOSITY AVERAGE MOLECULAR WEIGHT (M.W.)	_69
3.1.2 FT-IR Spectroscopy	_70
3.1.3. DIFFERENTIAL SCANNING CALORIMETRY (DSC)	
3.2. CHARACTERIZATION OF THE INSULIN-LOADED NANOPARTICLES DISPERSION	
SYSTEM	_72
3.2.1. Particle Size Determination	_72
3.3. EVALUATION OF PHARMACOLOGICAL ACTIVITY OF INSULIN-LOADED	
NANOPARTICLE PREPARATION	_73